NeuraTensor CUDA SDK

Custom CUDAfor Edge AI

Optimized CUDA kernels delivering 23ms inference with111x speedup. Production-ready neuromorphic computing.

ARCHITECTURE

7-Layer Architecture

Complete end-to-end system from NVIDIA Jetson hardware to industrial APIs.

Layer 7

Application Interface

REST API + WebSocket server

Python
Layer 6

Orchestration & Control

Execution loop, monitoring

Python
Layer 5

Industrial Integration

SLA Monitor, SEMI/GEM protocols

Python/C++
Layer 4

Model Architecture

Neural network implementation

Python
Layer 3

CUDA Acceleration

Custom GPU kernels

CUDA C++
Layer 2

Hardware Abstraction

Runtime & device management

Python/Shell
Layer 1

Physical Hardware

Jetson AGX Orin 64GB

Ampere GPU
CORE TECHNOLOGY

Built for speed

PERFORMANCE

Verified Performance

Benchmarks on Jetson AGX Orin 64GB · December 2025

Understanding the 111x Speedup

The baseline (~2588ms) represents PyTorch/TensorFlow running the same 64M parameter model with standard operations. NeuraTensor SDK's custom CUDA kernels achieve 23ms inference and 4x less memory through fused SNN-SSM operations, optimized memory patterns, and hardware-aware parallelization—delivering 111x faster performance.

Hardware Platform

GPU Subsystem

  • 2048 CUDA cores @ 1.3 GHz
  • 64 Tensor Cores (FP16/INT8)
  • Ampere Architecture (SM 8.7)
  • 16 Streaming Multiprocessors

Memory & I/O

  • 61.3GB unified LPDDR5 RAM
  • 204.8 GB/s memory bandwidth
  • 4MB L2 cache (shared)
  • Zero-copy CPU/GPU access
GET STARTED

Deploy NeuraTensor SDK

Contact us to learn more about licensing and deployment options for industrial applications.